
Introduction to Verification
Process

Krerk Piromsopa, Ph.D.

Department of Computer Engineering

Chulalongkorn University

1

1Tuesday, December 11, 2007

Outline

!Definitions and Terminology

!Design Process

!Test Strategy

!Coverage

!Event Monitor & Assertion Checkers

2

2Tuesday, December 11, 2007

Design Level

! Register Transfer Level (RTL)
"meaning

!Register – storage elements

!Transfer – equations and transformations
• input-to-register

• register-to-register

• register-to-output

!Level – of abstraction

"Cycle-by-cycle, or state-by-state

"No specific timing or physical characteristics

3

3Tuesday, December 11, 2007

Design Level

! Architectural Level

"Higher level, no detail about cycle-by-cycle.

"Correspondence design in RTL

"You will learn next semester

! Gate-Level

"Timing and physical characteristics of the gate

4

4Tuesday, December 11, 2007

Hardware Design

!Schematics

!Boolean equations (1938)

!Block diagrams and timing

!Flip-flop input equations (1952)

!RTL (1968)

5

5Tuesday, December 11, 2007

Life Cycle

Spec.
Req

Block Specification
&

Design

RTL
Implementation

Synthesis
and

Physical Design

What

How

Specified

Implemented

6

6Tuesday, December 11, 2007

Fundamental Verification Principle

! Implementation of RTL code mush follow
completion of the specification to avoid
unnecessarily complex and unverifiable
designs

Don’t rush to code.

7

7Tuesday, December 11, 2007

High-Level Design

! Modeling Algorithms, not the design
implementation details

! Formal Specification, Executable Specification,
Table specification

! HDLs are insufficient as specification languages:

"Lack of expressing environment design assumptions,
non-determinism and temporal properties,

"Tendency to migrate the specification toward a lower-
level cycle-by-cycle implementation model

8

8Tuesday, December 11, 2007

Block-Level Specification and Design

!Partitioning and Decomposition

!Advantages

"Partitioning promotes verification coverage

"Improve synthesis productivity

"Facilitate formal verification methodologies

"Enable Parallel development of block-level test
benches during RTL implementation.

9

9Tuesday, December 11, 2007

How (Implementation)

!Well, you have already mastered Verilog
and the EDA tools.

!You will learn to use FPGA and other tools
next semester.

10

10Tuesday, December 11, 2007

Testing vs. Verification

!During the process

!After the process

11

11Tuesday, December 11, 2007

Functional Test Strategies

!Each level have different objective.

"Executable specification – algorithmic
requirement (order of loads/stores)

"RTL – divide-and-conquer and bottom up
verification approach.
Transaction based verification

12

12Tuesday, December 11, 2007

Functional Test Strategies

!Deterministic or Directed Test

!Random Test

!Transaction Analyzer Verification

13

13Tuesday, December 11, 2007

Direct Test

Device
Under
TestTest

Interface

Test
File

14

14Tuesday, December 11, 2007

Random Test

Device
Under
Test

Random
Stimulus

Generator

15

15Tuesday, December 11, 2007

Hybrid

Device
Under
Test

Simulation
Controller Test Interface

Weight
FileBus Functional

Model

Bus Functional
Model

Test
FileWeight

File
16

16Tuesday, December 11, 2007

Transaction Analyzer Verification

Device
Under
Test

Simulation
Controller Test Interface

Weight
FileBus Functional

Model

Bus Functional
Model

Test
FileWeight

File

Simulation
Controller

17

17Tuesday, December 11, 2007

Others

!Chip Initialization Verification

"Dead-on-arrival (power-up)

!Verification Coverage

18

18Tuesday, December 11, 2007

Coverage

!Ad-hoc metrics

"Bug detection frequency

"Length of simulation after last bug found

"Total number of simulation cycles

19

19Tuesday, December 11, 2007

20

(3) Bug Data Analysis by Project Manager

 - A project manager drows the « test progress plans» before

 getting into an actual testing.

!"#$%&'(&"!)*+)*,
&-.+*+&/).01*)2

-"#"3.)45*&$"1+&*67*-)*,&

)4#*

!"#$%&'(
)*+)&-.+*+

8*-9:;&&<.!9=&&<.!9>?&&<.!9>@&&<.!9?A&&B*$9?&&B*$9@&&

20Tuesday, December 11, 2007

21

(3) Bug Data Analysis by Project Manager

 The Project Manager plots the test progress on the chart:

 - to determine the best strategies to improve the quality

 - to predict the release date.

!"#$%&'(&"!)*+)*,
&-.+*+&/).01*)2

!"#$%&'(&"!)*+)*,
&-.+*+&/.-)".32

-"#"3.)45*&$"1+&('"!,&

-"#"3.)45*&$"1+&*67*-)*,&

)4#*

!"#$%&'(
)*+)&-.+*+

8*-9:;&&<.!9=&&<.!9>?&&<.!9>@&&<.!9?A&&B*$9?&&B*$9@&&

21Tuesday, December 11, 2007

22

(3) Bug Data Analysis by Project Manager (continued)

0*#.4!4!1&)*+)&-.+*+&

67-)*,
.-)".3

$"1+&('"!,

$"1+&
67-)*,

$*+)&-.+*

0*#.4!4!1&)*+)&-.+*+&

67-)*, .-)".3

$"1+&('"!,

$"1+&
67-)*,

3'C&D".34)E&4!&70*54'"+&70'-*++

0*#.4!4!1&)*+)&-.+*+&

67-)*,
.-)".3

$"1+&('"!,

$"1+&
67-)*,

4!*67*04*!-*,&)*+)*0+

0*#.4!4!1&)*+)&-.+*+&

67-)*,

.-)".3

$"1+&('"!,

$"1+&
67-)*,

3'C&)*+)&-.+*&D".34)E

22Tuesday, December 11, 2007

23

(3) Bug Data Analysis by Project Manager

!"#$%&'(&"!)*+)*,
&-.+*+&/).01*)2

!"#$%&'(&"!)*+)*,
&-.+*+&/.-)".32

F*!*0.)4'!&'(&$"1+&1*)+&(3.)

G33&)H*&)*+)&-.+*+&
.0*&*6*-")*,%

)4#*

!"#$%&'(
)*+)&-.+*+

8*-9:;&&<.!9=&&<.!9>?&&<.!9>@&&<.!9?A&&B*$9?&&B*$9@&&

 Project Manager thinks it’s time release when:

 - All the test cases are executed.

 - The growth of bugs gets flat.

 - All the bugs are fixed.

 - 48-hour continuous operation successfully completed.

23Tuesday, December 11, 2007

Coverage

! Programming Code Metrics

"Line coverage

"Branch coverage

"Path coverage

"Expression coverage

"Toggle coverage

! Limitation

"Controllability vs. Observables

"No qualitative for functional correctness

24

24Tuesday, December 11, 2007

Coverage

!State Machine and Arc Coverage Metrics

!Fault Coverage Metrics

!Regression Analysis and Test Suite
Optimization (Agile ??)

25

25Tuesday, December 11, 2007

Event Monitors and Assertion Checkers

! Black-box testing vs. White-box testing

! Measuring functional correctness and detecting
erroneous behavior.

! Advantages
"halts simulation on assertion errors

"simplifies debugging by localizing the problem to a
specific area of code

" Increases observability

"Grading coverage

"Enable the use of formal and semi-formal techniques

"Capturing and Validating design environment
assumptions and constraints

26

26Tuesday, December 11, 2007

Events

!A desirable behavior

!Boundary (corner-case detection)

!Static event (a unique combination of
signals at some fixed instance of time)

!Temporal event (a unique sequence of
events or state transitions over a period of
time)

27

27Tuesday, December 11, 2007

Monitoring Code

`ifdef EVENT_MONITOR

always

 @(c_q_full or c_q_write) begin

 @(negedge ck) begin

 if (c_q_full & c_q_write)

 $display(“EVENT%0d:%t:%m”,
`EV_Q_FULL_WR,$time);

 end

End

`endif

event_monitor dv_q_full_write(

 ck,c_q_full & c_q_write,

 `EV_Q1_Q2_FULL);

module event_monitor(…..);

….

…

$display(….)

…

endmodule

•Embedded into RTL or encapsulate in a module

Directly embedded into RTL Encapsulate in a module
28

28Tuesday, December 11, 2007

Assertions

!Check for undesirable behavior during the
verification process (illegal event or and
invalid design assumption)

!Static and temporal

29

29Tuesday, December 11, 2007

Conclusion

!From DEC alpha 21261 Microprocessor

"Assertion checkers 34% of bugs

"Self-Checking directed test 11% of bugs

!Event Monitor Database and Analysis

!How will you apply this to your design?

30

Learn from experience....

30Tuesday, December 11, 2007

Bad Stuffs

!Race Condition

always @(posedge clk)

b=a;

always @(posedge clk)

c=b;

31

31Tuesday, December 11, 2007

Bad Stuffs

! Incomplete Sensitivity List

module b (p, w, x, y, z);

input [7:0] w, x, y, z;

output [7:0] p;

wire [7:0] w, x, y, z;

always @(w or x or y)

begin

r = w | x;

s = y | z;

p = r &s;

end 32

32Tuesday, December 11, 2007

