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Outline

!Definitions and Terminology

!Design Process

!Test Strategy

!Coverage

!Event Monitor & Assertion Checkers
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Design Level

! Register Transfer Level (RTL)
"meaning

!Register – storage elements

!Transfer – equations and transformations
• input-to-register

• register-to-register

• register-to-output

!Level – of abstraction

"Cycle-by-cycle, or state-by-state

"No specific timing or physical characteristics
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Design Level

! Architectural Level

"Higher level, no detail about cycle-by-cycle.

"Correspondence design in RTL

"You will learn next semester

! Gate-Level

"Timing  and physical characteristics of the gate 
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Hardware Design 

!Schematics

!Boolean equations (1938)

!Block diagrams and timing

!Flip-flop input equations (1952)

!RTL (1968)
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Fundamental Verification Principle

! Implementation of RTL code mush follow 
completion of the specification to avoid 
unnecessarily complex and unverifiable 
designs

Don’t rush to code.
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High-Level Design

! Modeling Algorithms, not the design 
implementation details

! Formal Specification, Executable Specification, 
Table specification

! HDLs are insufficient as specification languages:

"Lack of expressing environment design assumptions, 
non-determinism and temporal properties,

"Tendency to migrate the specification toward a lower-
level cycle-by-cycle implementation model
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Block-Level Specification and Design

!Partitioning and Decomposition

!Advantages

"Partitioning promotes verification coverage

"Improve synthesis productivity

"Facilitate formal verification methodologies

"Enable Parallel development of block-level test 
benches during RTL implementation.
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How (Implementation)

!Well, you have already mastered Verilog 
and the EDA tools.

!You will learn to use FPGA and other tools 
next semester.
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Testing vs. Verification

!During the process

!After the process
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Functional Test Strategies

!Each level have different objective.

"Executable specification – algorithmic 
requirement (order of loads/stores)

"RTL – divide-and-conquer and bottom up 
verification approach. 
Transaction based verification
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Functional Test Strategies

!Deterministic or Directed Test

!Random Test

!Transaction Analyzer Verification
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Direct Test

Device
Under
TestTest

Interface

Test
File
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Random Test

Device
Under
Test

Random 
Stimulus

Generator
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Hybrid

Device
Under
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Controller Test Interface
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FileBus Functional
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Bus Functional
Model

Test
FileWeight

File
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Transaction Analyzer Verification

Device
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Simulation
Controller Test Interface

Weight
FileBus Functional

Model

Bus Functional
Model
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FileWeight

File

Simulation
Controller
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Others

!Chip Initialization Verification

"Dead-on-arrival (power-up)

!Verification Coverage
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Coverage

!Ad-hoc metrics

"Bug detection frequency

"Length of simulation after last bug found

"Total number of simulation cycles
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20

(3) Bug Data Analysis by Project Manager

  - A project manager drows the « test progress plans» before

    getting into an actual testing.
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21

(3) Bug Data Analysis by Project Manager

    The Project Manager plots the test progress on the chart:

       - to determine the best strategies to improve the quality

       - to predict the release date.
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(3) Bug Data Analysis by Project Manager (continued)
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(3) Bug Data Analysis by Project Manager
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   Project Manager thinks it’s time release when:

       - All the test cases are executed.

       - The growth of bugs gets flat.

       - All the bugs are fixed.

       - 48-hour continuous operation successfully completed.
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Coverage

! Programming Code Metrics

"Line coverage

"Branch coverage

"Path coverage

"Expression coverage

"Toggle coverage

! Limitation

"Controllability vs. Observables

"No qualitative for functional correctness
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Coverage

!State Machine and Arc Coverage Metrics

!Fault Coverage Metrics

!Regression Analysis and Test Suite 
Optimization (Agile ?? )
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Event Monitors and Assertion Checkers

! Black-box testing vs. White-box testing

! Measuring functional correctness  and detecting 
erroneous behavior.

! Advantages
"halts simulation on assertion errors

"simplifies debugging by localizing the problem to a 
specific area of code

" Increases observability

"Grading coverage

"Enable the use of formal and semi-formal techniques

"Capturing and Validating design environment 
assumptions and constraints
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Events

!A desirable behavior

!Boundary (corner-case detection)

!Static event (a unique combination of 
signals at some fixed instance of time)

!Temporal event (a unique sequence of 
events or state transitions over a period of 
time)
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Monitoring Code

`ifdef EVENT_MONITOR

always 

 @(c_q_full or c_q_write) begin

 @(negedge ck) begin

  if (c_q_full & c_q_write)

 $display(“EVENT%0d:%t:%m”,
`EV_Q_FULL_WR,$time);

 end

End

`endif

event_monitor dv_q_full_write(

 ck,c_q_full & c_q_write,

 `EV_Q1_Q2_FULL);

module event_monitor(…..);

….

…

$display(….)

…

endmodule

•Embedded into RTL or encapsulate in a module

Directly embedded into RTL Encapsulate in a module
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Assertions

!Check for undesirable behavior during the 
verification process (illegal event or and 
invalid design assumption)

!Static and temporal
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Conclusion

!From DEC alpha 21261 Microprocessor

"Assertion checkers   34% of bugs 

"Self-Checking directed test 11% of bugs

!Event Monitor Database and Analysis

!How will you apply this to your design?

30

Learn from experience....
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Bad Stuffs

!Race Condition

always @(posedge clk)

b=a;

always @(posedge clk)

c=b;
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Bad Stuffs

! Incomplete Sensitivity List

module b (p, w, x, y, z);

input [7:0] w, x, y, z;

output [7:0] p;

wire [7:0] w, x, y, z;

always @(w or x or y)

begin

r = w | x;

s = y | z;

p = r &s;

end 32
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