Introdi to Verification

Tuesday, December 11, 2007

Outline

® Definitions and Terminology

® Design Process

® Test Strategy

® Coverage

® Event Monitor & Assertion Checkers

Tuesday, December 11, 2007

Design @

® Register Transfer Level (RTL)

O meaning
® Register — storage elements
® Transfer — equations and transformations
* input-to-register
* register-to-register
* register-to-output
® Level — of abstraction
O Cycle-by-cycle, or state-by-state

O No specific timing or physical characteristics

Tuesday, December 11, 2007

Design @

® Architectural Level
OHigher level, no detail about cycle-by-cycle.
O Correspondence design in RTL
OYou will learn next semester

® Gate-Level
OTiming and physical characteristics of the gate

Tuesday, December 11, 2007

Hardwaign Q

® Schematics

® Boolean equations (1938)

® Block diagrams and timing

® Flip-flop input equations (1952)
O RTL (1968)

Tuesday, December 11, 2007

ook) ()

lock Specificatiol
&
Design

Specified

RTL

How Implementation Implemented

Synthesis
and
Physical Design

Tuesday, December 11, 2007

Fundamrification Prin

® Implementation of RTL code mush follow
completion of the specification to avoid
unnecessarily complex and unverifiable
designs

Don’t rush to code.

Tuesday, December 11, 2007

High-Lesign Q

® Modeling Algorithms, not the design
implementation details

® Formal Specification, Executable Specification,
Table specification
® HDLs are insufficient as specification languages:

O Lack of expressing environment design assumptions,
non-determinism and temporal properties,

OTendency to migrate the specification toward a lower-
level cycle-by-cycle implementation model

Tuesday, December 11, 2007

BIock-Lecification and

® Partitioning and Decomposition

® Advantages
OPartitioning promotes verification coverage
Olmprove synthesis productivity
OFacilitate formal verification methodologies

OEnable Parallel development of block-level test
benches during RTL implementation.

Tuesday, December 11, 2007 9

How (Imntation) Q

® \Vell, you have already mastered Verilog
and the EDA tools.

® You will learn to use FPGA and other tools
next semester.

Tuesday, December 11, 2007 10

Testing @rification Q

® During the process
® After the process

Tuesday, December 11, 2007 11

Functiot Strategies Q

® Each level have different objective.

OExecutable specification — algorithmic
requirement (order of loads/stores)
ORTL - divide-and-conquer and bottom up
verification approach.
Transaction based verification

Tuesday, December 11, 2007 12

Functiot Strategies Q Direct T@ Q
® Deterministic or Directed Test
® Random Test
® Transaction Analyzer Verification

Test _

Tuesday, December 11, 2007 13 Tuesday, December 11, 2007

14
: >
Bus Functional / W

Model

gtel‘r?’nctjjclﬁrs1 —_— Simulation / Device
G Controller Under Test Interface

enerator
\ Test /
<> Bus Functional
/ Model
15 16

Tuesday, December 11, 2007 15 Tuesday, December 11, 2007

TransactiQ plyzer Verificati

Simulation

Controller

Simulation
Controller

Tuesday, December 11, 2007

Bus Functional
Model

}

Device
Under
Test

}

Test Interface

Bus Functional
Model

\
ERHEE

17

Others

® Chip Initialization Verification
ODead-on-arrival (power-up)
® \Verification Coverage

Tuesday, December 11, 2007

Covera

® Ad-hoc metrics

Tuesday, December 11, 2007

OBug detection frequency
OLength of simulation after last bug found

OTotal number of simulation cycles

(3) Bug Data Analysis by Project Manager

- A project manager drows the « test progress plans» before

getting into an actual testing.

numb. of b. of untested
test cases | o o _ numb. of unteste
=~. cases (target)
\\
N
N
N
N
Y
\
L S,
[
- ‘; - cumulative bugs expected
7
// \
/’ \
\
e \
- - S .
=== =~ time

Dec/30 Jan/5 Jan/12 Jan/19 Jan/26 Feb/2 Feb/9
20

20

Tuesday, December 11, 2007

(3) Bug Data Analysis by Project Manager

The Project Manager plots the test progress on the chart:
- to determine the best strategies to improve the quality
- to predict the release date.

numb. of

test cases | .. numb. of untested

-._ cases (target)

cumulative bugs found

remaining test cases

bugs found _—=

best case

remaining test cases

actual

expected™ .

(3) Bug Data Analysis by Project Manager (continued)

remaining test cases

expected™ actual

bugs found _—

low quality in previous process

remaining test cases

e, €Xpected

bugs found

inexperienced testers

= Tow test case qualltyﬁu

______ - time
Dec/30 Jan/5 Jan/12 Jan/19 Jan/26 Feb/2 Feb/9
21 2
Tuesday, December 11, 2007 21 Tuesday, December 11, 2007 22
(3) Bug Data Analysis by Project Manager Covera
Project Manager thinks it’s time release when:
- All the test cases are executed.
- The growth of bugs gets flat. ° Programming Code Metrics
- All the bugs are fixed. :
- 48-hour continuous operation successfully completed. OLine coverage
OBranch coverage
b. of
:::: caoses numb. o(f unteited OPath coverage
cases (target. .
& OExpression coverage
numb. of unteste Generation of bugs gets flat OTOggIe coverage
cases (actual) ® Limitation
O Controllability vs. Observables
All the test o .
are exeouted. O No qualitative for functional correctness
time
Dec/30 Jan/5 Jan/12 Jan/19 Jan/26 Feb/2 Feb/%;3 2
Tuesday, December 11, 2007 23 Tuesday, December 11, 2007 24

Covera

@ State Machine and Arc Coverage Metrics
® Fault Coverage Metrics

® Regression Analysis and Test Suite
Optimization (Agile ??)

Tuesday, December 11, 2007

25

Event M o@ and Assertion @ ers

® Black-box testing vs. White-box testing

® Measuring functional correctness and detecting

erroneous behavior.
® Advantages

O halts simulation on assertion errors
Osimplifies debugging by localizing the problem to a

specific area of code
Olncreases observability
O Grading coverage

OEnable the use of formal and semi-formal techniques

O Capturing and Validating design environment
assumptions and constraints

Tuesday, December 11, 2007

26

26

() O

® A desirable behavior
@ Boundary (corner-case detection)

@ Static event (a unique combination of
signals at some fixed instance of time)

® Temporal event (a unique sequence of
events or state transitions over a period of
time)

Tuesday, December 11, 2007

27

Monitori de

*Embedded into RTL or encapsulate in a module

‘ifdef EVENT MONITOR
always
@(c_g_full or c_g write) begin
@ (negedge ck) begin
if (c_g_full & c_g write)

$display (“EVENT%0d:%t:%m”,
'EV_Q FULL_WR, Stime);

end
End

“endif

event _monitor dv_g full write(
ck,c_g full & c_q write,
"EV_Q1 Q2 FULL);

module event_monitor(m..);

Sdisplay (...)

endmodule

Directly embedded into RTL

Tuesday, December 11, 2007

Encapsulate in a module
28

28

Assertio@ Q Conclus Q

® Check for undesirable behavior during the ® From DEC alpha 21261 Microprocessor
verification process (illegal event or and OAssertion checkers 34% of bugs
invalid design assumption) OSelf-Checking directed test 11% of bugs
@ Static and temporal ® Event Monitor Database and Analysis

® How will you apply this to your design?

Learn from experience....

Tuesday, December 11, 2007 29 Tuesday, December 11, 2007 30
® Race Condition ® Incomplete Sensitivity List
dule b :
always @(posedge clk) module b (p, W, x, y, 2);
b=a: input [7:0] w, X, Y, Z;
& output [7:0] p;
wire [7:0] w, X, Y, Z;
always @(posedge clk) always @(w or X or y)
c=b; begin
r=wjx;
s=yl|z
p=r&s;
31 end 2

Tuesday, December 11, 2007 31 Tuesday, December 11, 2007 32

